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We analyze the effective diffusivity of a passive scalar in a two-dimensional, 
steady, incompressible random flow that has mean zero and a stationary stream 
function. We show that in the limit of small diffusivity or large Peclet number, 
with convection dominating, there is substantial enhancement of the effective 
diffusivity. Our analysis is based on some new variational principles for convec- 
tion diffusion problems and on some facts from continuum percolation theory, 
some of which are widely believed to be correct but have not been proved yet. 
We show in detail how the variational principles convert information about the 
geometry of the level lines of the random stream function into properties of the 
effective diffusivity and substantiate the result of Isichenko and Kalda that 
the effective diffusivity behaves like 8 3/13 when the molecular diffusivity e is 
small, assuming some percolation-theoretic facts. We also analyze the effective 
diffusivity for a special class of convective flows, random cellular flows, where 
the facts from percolation theory are well established and their use in the varia- 
tional principles is more direct than for general random flows. 

KEY WORDS: Diffusion, convection; random media; percolation. 

1. I N T R O D U C T I O N  

The concentration density p of a cloud of passive particles diffusing with 
molecular diffusivity e and convecting in an incompressible fluid flow u, 
with V. u = 0, satisfies the convection-diffusion equation 

~Pt (x, t) + u(x). Vp(x, t) = e Ap(x, t) (1.1) 
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Fig. 1. Periodic cellular flow. 

with the initial concentration p(x, 0)=p0(x)  given. The paths of the 
particles are determined from the stochastic differential equation 

dx(t) = u(x(t)) dt + x/~ dw(t) (1.2) 

with x (0 )=  x0 given and with w(t) the standard Brownian motion. In two 
dimensions, the divergence free condition 

V . u = 0  (1.3) 

determines a stream function O(x) such that 

u(x, y)= (-Oy, Ox)=V• Y) (1.4) 

Figure 1 shows the streamlines of the periodic cellular flow given by 

~b(x, y) = sin x .  sin y (1.5) 

while those of perturbed cellular flows look like Figs. 2, 3, with an additive 
periodic and random perturbation, respectively. 

The large scale transport properties of (1.1) are characterized by the 
effective diffusivity matrix tr,, when the velocity field u has a repetitive 
structure, as in the case of a periodic or a stationary random tlow with 
mean zero. It is defined as the asymptotic rate of mean square displacement 
in the direction e: 

[x~(t). el 2 
~(e)  = lira (1.6) 

t ~  t 
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Fig. 2. Cat's-eye flow with c~ = 0.2. 

where the scaled process is 

The limit (1.6) exists with probability one for a large class of flows (see, 
e.g., ref. 11). The quadratic form a,(e) can be characterized in other ways 
as well, as, for example, by the cell problem (2.8) that is discussed in 
Section 2. We are interested here in the effective diffusivity of random flows 
and its behavior as the molecular diffusivity e tends to zero. This is the high 
Peclet number regime that is important for the understanding of transport 

Fig. 3. Cellular flow with random perturbation. 
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processes in real turbulent flows where the molecular diffusivity is often 
quite small. In general, we have the bounds t2" 9) 

Cle<~a,:(e)<~ c2 (1.8) 
c 

as e-~ 0, with c~ and c2 constants, which are not, however, very infor- 
mative since they do not take into account the geometric structure of the 
flow. A rigorous and rather full analysis of the large Peclet number regime 
for two dimensional periodic flows was given in ref. 9 using extensively 
variational methods that were introduced there. The variational principles 
were also derived by Cherkaev and Gibiansky in ref. 5. It was shown in 
ref. 9 that we have 

a~~c*e ~ as e ~ O  (1.9) 

and fluid flows for which 0~ = - 1 ,  or ~ [ 1/2, 1 ], with even a logarithm 
such as 

1 1 1 
-elog-<<.a~<<.celog-, as e ~ 0  (1.10) 

can be explicitly identified in two dimensions, in terms of the geometry 
of the streamlines. The exponent 0~ depends on the critical streamline 
geometry of the flows. For example, ~ = 1/2 for the cellular flow (1.5) (see 
also refs. 6, 20, and 21 ) and 0c = 1, 0c = - 1 for shear flows (see also ref. 7), 
in the direction perpendicular to the flow and along the flow, respectively. 
The constant c* can be calculated explicitly in several cases. Our analysis 
in ref. 9 makes precise the relation between streamline geometry and the 
large Peclet number behavior of the effective diffusivity a,: for two dimen- 
sional steady, incompressible, periodic flows. 

In this paper we extend the analysis and the use of variational 
methods to random flows. One important difference in the random case is 
that the cell problem for the effective diffusivity (2.8) is over the whole 
space R 2, rather than a periodic domain, and it is difficult to work with 
even though the mean field conditions (2.10) are convenient. It is handled 
through an infinite volume limit with appropriate boundary conditions and 
the more flexible these boundary conditions are, the easier it is to work 
with them. In Section 2 we explain how the effective diffusivity can be 
calculated with convenient boundary conditions, in an infinite volume limit. 

The direct and dual variational principles for the infinite volume limit 
are also presented in Section 2. The direct and dual minimum principles are 
used to obtain upper and lower bounds for the effective diffusivity. This 
is the way they were used in the periodic case/9) But it is possible in 
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principle, and sometimes desirable, to stay within the framework of the 
direct principles, without going to the duals, to estimate a, from above and 
below. We demonstrate this possibility for the periodic cellular flow in the 
Appendix. This is important when the effective diffusivity is not symmetric 
and the utility of the dual principles is restricted. 

The random flows considered in this paper are perturbations of the 
periodic cellular flow (1.5). This flow is degenerate because all its hyper- 
bolic stagnation points, and thus all separatrices, are on the same level set 
of the stream function ~, that is, the set of points where ff = sin x. sin y = 0 
is a periodic array of separatrices with the streamlines confined within 
each cell. This cellular flow structure is not stable under perturbations. 
Distinctive flows will emerge when perturbations r are introduced 

~(x, y) =sin x. sin y AV ~/I(X , y) (1.11) 

The perturbations destroy the regular lattice of separatrices by redistri- 
buting the hyperbolic stagnation points to different level sets of ~k so that 
streamlines are not confined inside the cells and those nearby the bound- 
aries of cells may reconnect in various ways depending on the properties 
of ~kl. However, the elliptic stagnation points at the center of the cells are 
stable to perturbations and survive along with the neighboring closed 
streamlines, the vortex islands. Typically, the phase plane divides into the 
complicated, reconnected (into closed loops or open channels) streamlines 
and into islands of vortices. 

When, for example, ~'/1 is doubly periodic in x, y such as ~l(X, y ) =  
cos x. cos y, Fig. 2, there is interaction between ~b~ and sin x. sin y and 
reconnection of the streamlines creates periodic arrays of open channels. 
Note that the degeneracy remains because the hyperbolic stagnation points 
split between the level sets of ~, = fi and ff = -fi ,  instead of being mostly 
different from each other. When ~'1 is quasi-periodic, such as ~,l(X, y ) =  
cos(px+qy).cos(-qx+py) with p 2 + q 2 = 1  and p, q rationally inde- 
pendent, then the flow can have a rather irregular channel structure. 
Similar structures occur with perturbations by constant drifts: ~k~(x, y ) =  
ClX-b c2y. Depending on the rationality or irationality of c~/c2, there are 
periodic or quasi-periodic channels. 

Time dependent perturbations, such as ff~(x, y, t )=  ~b(x, y )+s in  t, 
with ~b periodic in x and y, can create quite complicated flow structures for 
the Lagrangian trajectories and lead to chaotic dynamics. This does 
not occur in steady periodic flows in two dimensions. But stochastic 
streamlines will arise for flows with stream function (1.11 ) when the pertur- 
bation ~,l(X, y) is a random function. In Section 3 we consider randomly 
perturbed stream functions which have roughly the following features: 
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�9 The hyperbolic stagnation points are preserved, are generic and their 
elevations are independent, identically distributed random variables 
of size & 

�9 The zero level set ~, = 0 stays close to the lattice (nZ)  2 of unper- 
turbed separatrices and is not degenerate so that nearby level 
sets and their reconnections are essentially determined, in a way 
explained in Section 3, by the elevations of the hyperbolic stagnation 
points and the nearby streamlines. 

In this case, there is no systematic or resonant reconnection, as when 
~'1 = cos x .  cos y, and instead of open channels arbitrarily long streamlines 
emerge, which are like the perimeters of connected clusters in two dimen- 
sional bond percolation at critical probability. The rest of the streamlines 
reconnect randomly into closed loops of different lengths. The distribution 
of lengths is similar to that of cluster sizes in near critical bond percolation. 

This qualitative description of the geometry of the level lines of 
randomly perturbed stream functions has not been rigorously established. 
We also do not have a mathematical analysis for the critical exponents of 
perimeter lengths of the streamlines. However, it is reasonable to use the 
results from lattice bond percolation theory in two dimensions, some of 
which have been proved and the rest are widely believed to be true, as we 
explain further in Section 3.1.2. This is the main reason that we only 
consider stream functions of the form (1.11 ) that are small perturbations of 
the periodic cellular stream function. 

In refs. 14, 15, Isichenko, Kalda and Gruznov used a scaling argument 
in the Lagrangian description (1.2) based on the broken coherence hypo- 
thesis and concluded that 

C1,$3/13~(7~C2 ~3/13, a s  a ~ 0  (1.12) 

for randomly perturbed cellular flows described above. The broken 
coherence hypothesis is basically a separation of scales hypothesis and 
postulates that the effect of long streamlines on the particle trajectories is 
independent of that of short streamlines, on long times scales, so that the 
contribution to the effective diffusivity at over different scales can be simply 
summed up. A different scaling argument, based on the variational 
principles, is given in Section 3.2. 

In breaking the degeneracy of the periodic stream function sin x sin y 
with random perturbations, we are interested in the universality, if any, of 
the power law (1.12) for the effective diffusivity of convection dominated 
turbulent convection-diffusion. We note, for example, that the stream func- 
tions ( 1.11 ) that we are considering here are different from those studied by 
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Alexander and Molchanov; (1) theirs are not small random perturbations of 
a cellular stream function. We do not know how to extend our analysis to 
the stream functions of Alexander and Molchanov. We do not expect that 
the convection dominated behavior of the effective diffusivity will obey the 
power law (1.12) for the stream functions of Alexander and Molchanov. 

In applying the variational methods to random convection-diffusion 
our aim is to get sharp estimates for the effective diffusivity at. For this we 
need good trial functions and the evaluation of the variational principles 
for them. The evaluation is an essential part of the method and is not 
routine because we are dealing with nonlocal variational principles. The 
nonlocality is the price we pay for being able to use a variational principle 
for a nonsymmetric problem like convection-diffusion. As noted above, the 
structure of the large scale streamline geometry is not yet analyzed mathe- 
matically for the randomly perturbed stream functions so there is no proof 
that the trial functions we introduce and use exist. However, their existence 
is entirely dependent on the geometry of the random streamlines and is 
quite clear if that is well understood. In this paper, we focus on the use of 
the variational principles to translate in a transparent way geometric 
streamline information to the large Peclet number behavior of the effective 
diffusivity. 

In Section 4, we consider convection-diffusion in flows that have a 
multiplicative random perturbation of the form 

~(x, y) = ffl(x, y) sin x.  sin y (1.13) 

where O~(x, y) is the characteristic function of the random checkerboard 
configuration. This artificial flow maintains the cellular structure of (1.5) 
while suppressing randomly from cell to cell the motion inside the cells. 
The random geometry of the remaining ceils is known precisely from lattice 
site percolation theory and the construction of trial functions is now fully 
justified. This is a relatively simple, but somewhat artificial, example of a 
random flow where all steps in the analysis based on the variational 
principles can be justified. 

2. THE EFFECTIVE DIFFUSIVITY 

2.1. Long Time, Long Distance Behavior of the Density 

Using the skew-symmetric stream matrix 

~(x)=(~,(~ -~o (x)) (2.1) 
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the convection-diffusion equation (1.1) can be written in divergence form 

Op(x, t) 
c ~  - V. (e + ~(x)) Vp(x, t) (2.2) 

with initial concentration p(x, 0)=po(X). In homogenization t3, 16, 19) we 
look for the long time large distance behavior of solutions of (2.2). This can 
be done with a large parameter n > 0 by replacing t by n2t and x by nx in 
(2.2). We then have 

Op,(x, t) 
V. (e + ~(nx)) Vp,(x, t) (2.3) 

8t 

where p,(x, t) = p(nx, n2t), and ~,(x)  = ~(nx), x = (x, y). We assume that 
the initial data do not depend on n 

p,(x, 0) = po(X) (2.4) 

which is equivalent to assuming that they are slowly varying in the 
unscaled variables. 

For a random stream function r that is uniformly bounded, or 
even square integrable 

(Ir (x , . ) )  < oo (2.5) 

where ( . )  stands for the ensemble average, it is shown in refs. 3, 16, 19, 
and 10 that the solution of (2.3), pn(x, t), converges to #(x, t), the solution 
of an equation with constant coefficients 

o# 1 
e-; = v . ~  (o~+ ~ +) v# 

#(x, o) = po(X) 

(2.6) 

where a~. is the effective diffusivity and a~ + its transpose. The convergence 
is in L 2 

sup ~ dx [pn(X, t ) - /~(x ,  t)12---~ 0 (2.7) 
O<~t<~t 0 I(~[ 

as n ---} 0% for any to > 0 and for almost all realizations of the random flow. 
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The effective diffusivity tr~ is in general a nonsymmetric matrix but 
has a positive definite symmetric part and is determined by a random cell 
problem. This means that we must find for each unit vector e a random 
function X=Z(x; e) which is the unique (up to a constant) solution of 

V. [(eI + H)(Vz + e)] = 0  (2.8) 

with VX a stationary, mean zero random field. The effective diffusivity 
matrix, denoted by tr,, is given by 

a~(e)=a~e.e = a ~ ( e ) = e ( ( V z + e ) . ( V z + e ) )  = e + e ( V x ' V Z )  (2.9) 

We see, therefore, that the small diffusion limit (e ~ 0) of the effective 
diffusivity cr~ amounts to the analysis of the singularly perturbed, random 
diffusion equation (2.8) on the entire space. Note also that convection 
always enhances diffusion since try(e)i> e. 

The fact that the cell problem (2.8) determines the effective diffusivity 
can be understood physically as follows. We state this for a problem in R d 

even though we deal with d = 2 only here. Let { ej} be a basis of orthogonal 
unit vectors in R d, let ;0 be the solution of the cell problem (2.8) and let 

Ej=  Vzj+ej  (2.10) 

Then Ej is the field intensity, the concentration or temperature gradient, 
and 

Dj = (~I+ ~ ) E j  (2.11) 

is the flux. Since ~ is skew symmetric, the intensity-flux relation is not the 
usual Fourier law but resembles that of a Hall medium. From (2.8) and 
(2.10) we see that 

g x  gj=O, V.Dj=O,  (E j )  =ej  (2.12) 

and 

a , (E j )  = ( D j )  (2.13) 

Relation (2.11) is the linear constitutive law relating intensity and flux. 
Equations (2.12) tell us that Ej is a gradient, that there are no sources or 
sinks and that the mean or imposed intensity is a unit vector in the direc- 
tion ej. The effective diffusivity tr,, is defined by (2.13), which is the linear 
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constitutive law relating mean intensity and mean flux. It is in general a 
nonsymmetric matrix given by 

o'~e i .e: = a~(ei, e:) = ( D  i �9 ej)  

= ( ( e l +  ~ )  E;. Ej)  (2.14) 

It is shown in ref. 10 that a,: is symmetric if the probability distribution of 
the streamfunctions is invariant under the transform 

4 , ( x )  ~ - q , ( x )  ( 2 . 1 5 )  

The sign symmetry condition (2.15) is satisfied for the random flows 
considered in Section 3 and 4. This makes it easier to apply the dual 
variational principle to obtain lower bounds for a~. 

2.2. Infinite Volume Limit for the Effective Diffusivity 

The effective diffusivity is characterized by the random cell problem 
(2.8) in a precise way. In the periodic case, it reduces to a standard elliptic 
equation in a period cell and admits nonlocal variational principles and 
their duals, defined over a period cell, which in turn can be used to obtain 
sharp estimates on the effective diffusivity in the small diffusion regime 
(e ~ 1, see ref. 9 for details). But in the random case, the use of (2.8) over 
the whole space is rather limited. To analyze this problem we have to 
approach it via an infinite volume limit of periodic cell problems with 
suitable, periodic boundary conditions. These periodized, finite volume cell 
problems are as follows. 

Let us assume for simplicity that {e~} is the set of the orthonormal 
eigenvectors of 1/2(a~+a~) and let tpn be the periodic stream function 
defined on [ -  1, 1 ] 2 such that 

~,,( - x , ,  x2) = ~,,(x,, x2) (2.16) 

t~,,(x,, - x 2 )  = ~ , (x l ,  x2) (2.17) 

Clearly, ~n(--X)=~n(X). Let 9,:., be the effective diffusivity of the 
periodized flow constructed above. This depends on the realization of the 
random medium because the average ( . )  in (2.9) is now a volume average 
overthe period cell. A corollary of homogenization theory is the con- 
vergence of the effective diffusivities of the periodized cell problems. That 
is, if I~nl is uniformly bounded and {e;} the set of eigenvectors of the 
symmetric part of a,: then 

lim 6~.,(ei, ej)=a~(eg, e: .) ,  i , j = l , 2  (2.18) 
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with probability one with respect to the random medium. In the proof  of 
this result we can use the variational methods developed for periodic flows 
in ref. 9 which we will now summarizes in ce we need them for the small 
e analysis. 

2.3. Var ia t iona l  Pr inciples 

We summarize here the facts about variational principles for the sym- 
metric part of #~, n (see ref. 9 for details) which will be needed in this paper. 

Let ~ g ( [ -  1,112), ~ ,~( [ -  1, 1] 2) be the Hilbert spaces defined by 

ougg([ - 1, 1 ]2) = {F periodic in [ - 1, 1 ]21V x F = 0, f[ d x F = 0 }  
- -1 ,1]  2 

(2.19) 

~ ( [  - 1' 112) = {G peri~ in [ - 1' 112 [ V ' G = 0' f[ - -1 ,1]  2 dx G -~ 0)  

The subscript g stands for gradient fields and the subscript c for curl fields, 
respectively. We have first the direct min-max variational principle for 
O'e, n(e/), as in Appendix A.2 of ref. 9 

ax I~e, n( e i)  = i n f  sup ~ 1,1 ] 2 
F c e i +  ~,(g([ 1,1] 2) F'e~et~g([--1,1] 2) 

x {eF. F -  2 ~ n F .  F ' -  eF' �9 F'} 

Eliminating the 
equation 

(2.20) 

supremumin (2.20) by solving the corresponding Euler 

V . F ' + V .  = 0 (2.21) 

1 I F' 2~ dx = 0 (2.22) 
[ - - 1 , 1 ]  2 

we obtain the nonlocal, direct minimum principle 6~, n: 

1 I { F . F + I F ~ n F . F ~ n F }  (2.23) #E,n(ei) = inf 2-- 7 dx e 
F ~ ei + ~"~g( [ -- 1, 1 ] 2 ) [ 1,1] 2 
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where 

/ '=VA-1V �9 (2.24) 

is the projection onto the zero mean gradient fields. 
One may also get a maximum principle by eliminating the infimum 

#~.(ei) = sup 1 f dx 
�9 F '  c ~ g ( [  1,112) ~ '~ I - - l , 1 ]  2 

x{  - e F ' F '  I F g " F ' F ~ " F ' + 2 ( I - F ) ~  ' } - -  e ~ . F  e ,+e  (2.25) 

This maximum principle is not very useful in obtaining lower bounds for 
#~,,(ei) unless we can evaluate the nonlocal term sufficiently accurately, 
which we can for periodic laminar flows. We demonstrate this possibility in 
the Appendix. 

In general, we do need the dual minimum principles (Appendix A.1 of 
ref. 9) to get sharp lower bounds. They have the form 

~2(ei)  = inf sup 1 f dx 
G e e i +  ~'~,,([ 1 ,1]  2) G ' ~ o f f c ( [ - - 1 , 1 ] 2 )  ~ [ - - 1 , 1 ]  2 

1 1 

e l +  
C2 n 

x{ G ' G + 2 ~ " G ' G ' - G ' ' G ' } e  (2.26) 

Eliminating the supremum, we obtain the nonlocal dual minimum principle 
for the periodized effective resistivity 

l f t  1 1 ~7~ (e;) = inf 2-- 5 dx - 
' G ~ ei + affe( [ - - 1 , 1 ]  2 ) - - 1 , 1 ]  2 e l + l  

{ G . G + G ' . G ' }  (2.27) 

where the periodic field G' satisfies 

Vx 
, ] [ 1 1 ]  

1 + 1  G' = V x  + 1 - ~ . G  
1 

(2.28) 

f[ dx G' = 0 
- - 1 , 1 ]  d 

(2.29) 
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Note that because of the symmetries of the extended stream func- 
tion ~n, we can restrict the trial fields F = Vf, G = V'g for (2.23), (2.27), 
respectively, to ones with the symmetry 

flxi=-i =2flx,=o-fl~i=~, fl~j=-~--- flxs=,, Vjv~i (2.30) 

gl~j= 1 = 2glxj=0- gl~j=l, glx,=-~=glx,=l, Vjr (2.31) 

and such that 

�88 1.132 dx F =ei '  F is periodic in [ - 1 ,  1] 2 (2.32) 

I f  d x G = ( - 1 )  i+lei, G is periodic in [ - 1 , 1 ]  2 (2.33) 
[ - - l , l ]  2 

The symmetry allows us to reduce further the construction of the trial 
functions to [0, 1 ] 2 and satisfying 

x i=  1 [f]x,=o=flx,=l-flxi=o=l, O<<.xs<<.l, Vj~i (2.34) 

[g]~=~o=glxj=l-gl~=o=l, 0~<x~.~< 1, Vj:~i (2.35) 

We do not need to specify conditions in the direction orthogonal to e i since 
the {ei} are assumed to be the eigenvectors of the symmetric part of a~ so 
that discrepancies in the boundary data in the orthogonal direction do not 
affect a,. n(ei) in the limit n ~ ~ .  

3. RANDOM PERTURBATIONS OF PERIODIC 
CELLULAR FLOWS 

In this section we attempt to study as rigorously as possible the 
universality question of the scaling laws for the effective diffusivity and the 
transport mechanism of the fractal boundary layers arising in random 
flows whose stream functions are small random perturbations of cellular 
ones. The variational analysis presented here makes a precise connection 
between the scaling laws for the effective diffusivity and the ones for the 
streamline geometry (statistical topography) by using "good" trial func- 
tions. Therefore, if there is universality for the former, it is directly related 
to that of the latter. By changing the probability density of the heights of 
the saddle points of the perturbed cellular stream function, our analysis 

822/88/5-6-4 
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shows that there is a whole range of scaling exponents in (0, 1/2) for the 
effective diffusivity. Among them, 0~ = 3/13 may be considered as a typical 
one because the height density is bounded above and below over a finite 
interval in this case. 

When the regular lattice of separatrices in the periodic stream function 
sin x sin y is destroyed by random perturbations, it gives rise to closed 
streamlines whose perimeters vary on many length scales. The molecular 
diffusivity selects a specific scale that determines the fractal boundary layer 
for transport. 

3.1. Statistical Topography 

3.1.1. The Random Stream Functions. In this section we first 
follow (14) in describing the class of randomly perturbed cellular flow stream 
functions ~O(x), x - ( x ,  y ) ~ R  2, that we will consider. Then we apply the 
variational methods of Section 2 to study the behavior of ~ as e ~ 0. The 
random stream functions are sign symmetric, that is, ~,(x, y) is statistically 
equivalent to - ~ ( x ,  y). Consequently, the effective diffusivities tr~ are 
symmetric and we assume that they have ~/2 rotational symmetry. 

The level sets of sin x .  sin y constitute the two dimensional periodic 
cellular flow. (9) All streamlines are closed and their lengths are uniformly 
bounded, except for one critical level set which is defined by sin x .  
sin y = 0. This critical level set is an infinite periodic network of heteroclinic 
orbits (i.e. separatrices) which are unstable under perturbations. The 
instability comes from all the saddle points having the same elevation. 

Now we add a random perturbation ~bl(X, y) to sin x-s in  y and 
consider the stream function 

~(x, y) -- sin x.  sin y + t~ / l (X , y) (3.1) 

where fi is sufficiently small and ~r y) is Cl-smooth, uniformly bounded, 
sign symmetric, statistically invariant under lattice translations and rota- 
tions, and with sufficiently fast decaying correlation functions such that: 

(A) The vortex islands of sin x.  sin y are essentially preserved near 
the center of the cells so that the perturbed ~ changes sign when going 
from one such region to an adjacent one. 

(B) The saddle points, i.e. the hyperbolic stagnation points, are 
preserved and their elevations are independent, identically distributed 
random variables with absolute value less than & 

(C) The locations of the elliptic and hyperbolic stagnation points are 
essentially those of the square lattice ((7c/2)Z) 2. 
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(D) The zero level set ~b = 0 always stays close to the (zrZ) 2 lattice of 
unperturbed separatrices and the function ~k is not degenerate so that near 
by level sets and their reconnections are essentially determined by the 
elevations of the saddle points they pass by, as explained below. 

Condition (A) is a simple consequence of the KAM  theory in view of 
the Hamiltonian structure of two dimensional incompressible flows. The 
first half of (B) is implied by the stability of hyperbolic stagnation points. 
The distribution and correlation of the saddle point elevations are 
completely determined by ~b~ since they are at the same elevation before 
perturbation. Condition (C) can be relaxed and together with (B) and (D) 
it enables us to stay as close to the lattice bond percolation models as 
possible. 

In short, the saddle points of  the perturbed stream function maintain the 
lattice structures, Le. they are the sites of  the lattice 0zZ) 2, and the saddle 
point elevations are i.i.d, random variables. 

Let us give an example in which all of the preceding conditions 
(A)-(D) are satisfied. Take any i.i.d, random variables on the lattice sites 
of (nZ) 2 distributed with a density compactly supported in [ -  1, 1 ] and 
symmetric with respect to zero. To build the perturbation function 
~b~(x, y), we first interpolate on the lattice bonds such that the derivatives 
at sites are zero. This can be done by cubic polynomials and the result is 
a C 1 function defined on the two dimensional lattice with zero derivatives 
at lattice sites. Next, we extend this function to the entire plane by inter- 
polating it square by square. To ensure the Cl-ness across the lattice 
bonds, we demand that the extended function has zero normal derivatives 
on the lattice bonds. Now the construction redues to the existence of a 
collection of C ~ functions on a square with cubic polynomials as Dirichlet 
data and zero Neumann data which is clear. Condition (A) holds for suf- 
ficiently small ~ because of KAM theorem. Since the lattice sites are also 
the stagnation points of the perturbation ~bl and the function sin x sin y, 
and since at those sites the former is i.i.d, random variables and the latter 
is zero, Condition (B) is satisfied. Condition (C) is really a consequence of 
(A) and (B). The zero level ~b = 0  stays close to the lattice because of small 
perturbation. The function is no longer degenerate near the zero level ~, = 0 
since the elevations of saddle points are i.i.d. Thus (D) is satisfied too. 

As a consequence of the random saddle point elevations the infinite 
periodic network of separatrices, together with the web of  its g-neigh- 
borhood, is essentially destroyed. Since ~ is sign symmetric, ~p(x, y ) =  0 is 
still the critical level set. It has infinite length since {~b >0}  and {~b <0} 
are statistically equivalent and unbounded, and it must extend to infinity 
in an irregular fashion because both {ff > O} and {ff < O} are stationary 



1048 Fannjiang and Papanicolaou 

random sets with rc/2-rotational symmetry. The rest of the level sets are 
disconnected and each piece has finite length; there cannot be two infinite 
isotropic level sets. Along with the regularity of the streamlines, the dis- 
tribution of their lengths is also changed to that of the near critical power 
laws of bond percolation theory. 

Note that the perturbed ~b is stationary in the probability space which 
is the product of the period cell for the unperturbed stream function and 
the ensemble of the random perturbations, which have rapidly decaying 
correlations. 

3.1.2. Connection with the Lattice Bond Percolation 
Models. The statistical topography of the streamlines is a collection of 
continuum percolation models which may be analyzed by mapping them to 
lattice bond percolation models. The idea of mapping continuum to lattice 
percolation models is presented in Ziman ~25) and was developed further by 
Weinrib. (23) 

We first identify the local minima of ~(x, y) as sites. Two neighboring 
sites are connected by steepest descent lines passing through saddle points. 
We identify the steepest descent lines as bonds. They form essentially the 
n/4-tilted square lattice (x/~ 7cZ) 2. To determine a given level set ~ = h, for 
[hi < fi, we shall construct a model of independent bond lattice percolation 
with bond occupation probability p(h): a bond is said to be occupied if the 
prescribed elevation h is higher than the saddle point elevation ~. on the 
bond. When this occurs, the neighboring sites are called connected. Clearly, 
the backbone of { ~, ~< h} corresponds to the random cluster of occupied 
bonds and the level set ~O(x, y ) = h  is essentially the perimeter of the 
unperturbed cells of connected sites (Fig. 4). 

The occupation probability p(h) is 

t -  h 

p( h ) = j P( ~,) &k s, for (3.2) 

where P(~ks) is the probability density of the saddle point elevation, i.e. the 
one point distribution of ~b at the saddle points, assumed to have support 
in [ -fi ,  6]. The critical bond percolation probability Pc = �89 corresponds to 
the critical elevation hc = 0. The level set ~(x, y ) =  hc corresponds to the 
infinite perimeter of the unique infinite bond percolation cluster at p = Pc. 
Thus we may view the statistical topography of Ir ~< h as a family of near 
critical bond percolation models depending on h. Not surprisingly, the near 
zero level sets completely determine the asymptotics of a~ for small e. 

In general, we may take the saddle point elevation density to have the 
form 

P(~ks)~ [~ks[ y, for [~,l ~ 1 (3.3) 
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with y > - 1. Negative y means concentration of saddle points at the zero 
level, with the periodic cellular flow being the extreme, while positive y 
means scarcity, the cat's-eye flow with open channels being the extreme 
(Fig. 2). The case Y = 0 is the one on which we focus our analysis and may 
be considered as typical. 

The near critical behavior of bond percolation clusters in two-dimen- 
sion is known very well (18) (but little is proved rigorously). When h r he, 
all the clusters are of finite size in the sense that clusters whose size is larger 
than the correlation length 

~(h)~h -v, for Ihl<<& v =4  (3.4) 

are exponentially scarce. We may think of ~(h) as the typical diameter of 
the level set ~k(x, y ) =  h. There is another nontrivial hull exponent, dn, 
denoting the fractal dimension of a large connected clusters of occupied 
bonds. It is known ~2z) (and numerically confirmed 124) but not proved 
rigorously) that 

di~= 1 + 1/v = 7 (3.5) 

Fig. 4. Connection with bond percolation models: Dashed lines are the separatrices of the 
original lattice (nZ)  2 of the per iodic cellular flow. Crosses represent the local minima, the 
sites, connected by bonds through saddle points. The occupied bonds are represented by dark 
strokes, while the perturbed streamlines are represented by solid lines, schematically. The 
streamlines consist of the external and internal (darker solid lines enclosed by the occupied 
bonds) hull of the clusters of occupied bonds. 
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It follows form (3.4) and (3.5) that the typical length of the external hull 
of the near critical level set is 

f(h) ,-~ h-vd", for Ihl < <  0 (3.6) 

Moreover, since we assume that IV~Ol is bounded away from zero and 
infinity except at a set of discrete stagnation points, (3.4) gives the typical 
width of a web formed by the contours with the diameter of order 

1 
w ( ~ ) ~  -l/v, for ~ > > - -  (3.7) 0v 

We will see in the next few sections that these power laws determine the 
asymptotic behavior of the effective diffusivity in the small molecular 
diffusion limit. Given the streamline geometry in the form of postulating 
the existence of trial functions that reflect this geometry (to be spelled out 
in Section 3.3 and 3.4), the main conclusion is as follows. 

Given the exponents 7 and dH as in (3.3), (3.5), the effective diffusivity 
obeys the power law 

1 
cle"<~a~<~c2 e~, with ~ - - - e ( O ,  1/2) (3.8) 

2 + vdH 

where v = 4 ( ~ +  1)~(0, oo) and cl,  c2 are constants as e---}O. In particular, 
when y = O, and thus v = 4 as in (3.4), the exponent ot is 

o~ = 3/13 (3.9) 

Fig. 5. Percolat ing level sets hc = 0 ~< ~b ~< 1.0. 
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We will analyze the case y = 0  in the next few sections and then 
indicate how to generalize it at the end. 

3.2. Scaling Argument for the Effective Diffusivity 

We begin with a heuristic scaling argument based on the variational 
principles. 

The effective diffusivity is the bulk transport coefficient influenced 
mostly by large scale excursions. In the case of the periodic cellular flow 
~k(x, y) = sin x .  sin y, the diffusing Brownian particles travel long distances 
by hopping from one cell to another. They accomplish this by convection 
around the cells and by diffusion in a narrow strip near the separatrices 
(i.e. the boundary layer or the web). The width w of the periodic boundary 
layer is determined by the balance of the diffusive flux across the layer and 
the convective flux along the layer in each cell. This balance is expressed 
by the equality of the diffusion time scale to the convection time scale 

w 2 ,,~ E (3.10) 
u 0 

where ~ is the size of the cell and u0 is the magnitude of the velocity, both 
of order 1 for ~b(x. y) = sin x.  sin y. Thus 

w ~ x//~ (3.11) 

Fig. 6. Isolated is lands of  level sets 0.1 ~ ~b ~ 1.0. 
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The effective diffusivity as can be obtained from (2.23). Roughly, the 
appropriate trial functions f such that V f  = F should have large gradients 
of order 1/x/~ inside the boundary layer and be flat otherwise, while 
maintaining a unit average gradient. Thus the diffusive flux is 

efto,11 dxF'F~e "w~x/~ (3.12) 

and the convective flux is 

! lEo l, 1~ dx F ~ . F .  F ~ . F ~  v/~ (3.13) 

since they are balanced by (3.10) and so as ~ x/~ for cellular flows. For the 
details of this calculation, we refer to ref. 9. 

We now apply the above scaling argument to the random stationary 
stream functions ~,(x, y). The width of the fractal boundary layer 
associated with the critical level set O(x, y ) = h e = 0  is determined by 
equating the diffusion time scale to the convection time scale. For h > 0 this 
means that 

w2(h) ~(h) 
m ~ m 

8 U o 
(3.14) 

and as h approaches h<. = 0, f (h)  gets larger according to the power law 
(3.6), while the non-degeneracy of the stream function implies u o is of order 
one and w ( h ) ~  h. So (3.14) determines the typical level sets ~9(x, y ) ~ h , ( e )  
that contribute to large scale transport, as e ~ 0 

h, ,., ~:1/(2 +,,a.) (3.15) 

With a web of this size, the diffusive flux will be 

; (U e d x  F .  F ~ e �9 E(h,).  w(h~) 
[ 0 , 1 ]  2 

,.~/~3/13 (3.16) 

where f(hs) ,  w(h,) is the area of the boundary layer or web. The convective 
flux is expected to behave similarly because of the balance of time scales 
(3.14). Thus, the effective diffusivity behaves like 

O'e ~ r  (3.17) 
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as e ~ 0, with c a constant. In the analysis in the following sections we get 
instead of (3.17) the bounds 

Cl ~3/13 ~ (7 e ~ C2 e3/13 (3.18) 

as e ~ O, with constants c~ and c2. We use the variational principles (2.23) 
and (2.27), and the critical scaling laws (3.4), (3.5) and (3.6). Vfis evidently 
aligned with the derivative with respect to tp and hence (3.20) immediately 
follows from the scaling of the stream variable. 

3.3. Upper Bound 

We first introduce the notion of boundary layer functions of scale h for 
the periodized variational principles of section (2.3). For a periodized cell 
of size n a boundary layer function of scale h is one whose gradient is 
supported in the boundary layer Wh,n = { I~.1 ~<h} and is asymptotically 
orthogonal to the velocity field, as h ~ 0. 

For the variational principles of section (2.3) we assume that there 
exist boundary layer trial functions fh, ~ of scale h that satisfy the conditions 

It t(h) l i m  dx (Vfh,.) 2 ~< c (3.19) 
o,132 h 

f h (3.20) ,lim d x  ( t l  n �9 V f h ,  n)  2 ~ CU 2 f (h )  
; , , [0,1] 2 

as h ~ 0. To be admissible as a trial function for the periodized cell 
problems of sections 2.2 and 2.3, fh, n must also satisfy the mean gradient, 
or the linear growth condition (2.34, 2.35). Here h is a positive number that 
will be chosen to depend on e, h = h~ and will tend to zero as e ~ 0 in a 
suitable way. When h = h,, we write fh~, n = f, ,  ~ and F h ,  ' n----F~, n where 
F h ,  n = V f h ,  n" In the following, we denote a general constant independent of 
e and n by c. 

Let us explain why (3.19, 3.20) are compatible with our understanding 
of the percolation geometry near h = 0. Since fh, ,  is flat everywhere except 
in the region between the external hull of {~n~<-h} and {t~n~>h}, the 
integrals in (3.19) and (3.20) are confined to the boundary layer region 
Wh.n. As explained in Section 3.1, both {~.~< - h }  ~ [0, 1] 2 and {t}n ~>h} 
h i 0 ,  1] 2 consist approximately of (n/~(h)) 2 connected components 
(clusters) with diameter ~ . ( h ) = ~ ( h ) / n  and perimeter E . ( h ) = ( ( h ) / n ,  
separated by Wh, n, in each of which the trial function fh. ~ is a constant. 
The change infh.~ across the boundary layer is chosen to be of order ~.(h) 
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so as to be consistent with the mean gradient condition (2.34). Therefore 
the cross-stream derivative offh, n in Wh,,, is of order ~n(h)/wn(h) where 
w.(h) = w(h)/n is the width of Wh,. and is proportional to h/n for small h. 
In the direction parallel to the velocity, fh,. is chosen to vary in proportion 
to ~n(h)/fn(h) per unit length along Wh,,, so that the along-stream 
derivative offh,,  is of order ~.(h)/r This makes it consistent with the 
condition that the variation of f h, n from cluster to adjacent cluster be of 
order ~.(h). Thus Fh,. points asymptotically for small h in the cross-stream 
direction and is of order ~(h)/w.(h). Condition (3.19) follows from these 
facts 

fto,112 dx Vh,.. Fh,. < \w- -~ /  ~.(h) w.(h) 

h ~< c - -  (3.21) ~(h) 

Similarly, we have that 

, dx(u. .Vfh, . )Z~cuZ(~"(h)~2( n ) 2 
r io  1] 2 \ ffn---~// ~ - ~  

~.(h) wn(h) 

2 h 
CUo ~(h ) (3.22) 

which is (3.20). 
The estimate for the diffusive term in (2.23) (the first term in the 

integral) is immediate from (3.19) or (3.21) and gives 

fE h 
e dx F h n" Fh n ~' C~ (3.23) 

0,1] 2 " ' E(h) 

The estimate for the convective flux (the second term in the integral in 
(2.23)) is more involved. If we write FTtnFh,.=Vf'h,., then f~,. is the 
[ -  1, 1 ] 2-periodic solution of the rescaled Poisson equation 

Aft,,,, = nu..  Vfh,,, (3.24) 

and hence 

0,1] 2 ' , 0,112 



Convection-Enhanced Diffusion for Random Flows 1055 

Now from the energy estimate for (3.24) we have that 

0 ,112  Wh, n Wh,n 

<~/nZfw~ dX'u,'Vfh,,,)2"N/C,,,,,fwh, dx(Vf"2 

(3.26) 

The constant Ch,, is of order (h/n) 2, assuming f~ , ,  is asymptotically a 
boundary layer function as n ~  ~ .  Thus we have for (3.25) the upper 
bound 

(3.27) 

(3.28) 

~t h3 1 dx Vf th ,n  " Vf th ,  n ~ CU 2 ff,~(h) 
- 0 ' 1 ]  2 

Adding (3.23) and (3.27) we have 

e ~[O, 1]2dx Vfh,n" Vfh,n + ! f[O, 1]2dx Vfth, n" Vfth, n 

<. ce + cu~ el(h) 

which is an upper bound for the effective diffusivity by (2.23). This bound 
is optimal when the right side of (3.28) is minimized over h. The result is 

E(h,) h i (3.29) 

which determines the scale h, 

h, ~ e 3/13 (3.30) 

The effective diffusivity is therefore bounded from above by 

~r~<~ce 3/13, as e ~ 0  (3.31) 

when (3.30) is substituted in (3.28). 
Note that condition (3.29) is a precise version of the heuristic time 

balance (3.14) and is a consequence of the variational principle. 
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3.4. Lower  Bound 

To get a lower bound for the effective diffusivity o'~, we use the dual 
variational principle (2.27). The trial functions gh, ~ will again be boundary 
layer functions of scale h and they must satisfy the mean gradient condition 
(2.35). 

The factor 1 / (e2+~)  in the integral in (2.27) and conditions (3.19, 
3.20) suggest that we demand that the trial functions gh,, satisfy the 
conditions 

limo~ ' , ? d x - ~ .  V • 1 7 7  E(h)  
0 1 , h 3  (3.32) 

lim fE 1 1 (3.33) o,l]2 (un" Vgh, n)2 f(h)  

where Uo is a typical size for the velocity field and is of order one relative 
to e. Since the integrals are mainly over the boundary layer region Wh,,, 
the streamffmction ~n is of order h and hence conditions (3.32, 3.33) are 
the same as (3.19, 3.20) with the rightside divided by h 2. The existence of 
boundary layer functions gh, n that satisfy the conditions (3.32, 3.33) is 
therefore a consequence of the existence of boundary layer functions that 
satisfy conditions (3.19, 3.20). 

Condition (3.32) gives immediately the upper bound on the diffusive 
resistance, the first term in the integral in (2.27), 

fE dx------z-V g h . ' V  gh, n<~C h ~  (3.34) l i m  ~ • �9 e~(h)  

The convective resistance, the second term in the integral in (2.27), is 

1 1" dx 1 - - . ~ S  G~,n. G~,,. (3.35) 
7J~o,,j~ e~+g, 

v V l _ V  t with Gh, n = gh,n and gh, n the [ -  1, 1 ] 2-periodic solution of the dual 
Poisson equation 

1 ~n ) 1 - 1 t P  2 
/3 8 2 

V• " l •  =V• l + = t b  (1+~5~p7~) (3.36) 
- -  1-"2 1 -,", 2 u'< Vgh'' 1 ~p2 V gh,. �9 V• n 

1+ ~2 n g 2 r n  
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This reduces to the following asymptotic equation as e ~ 0, after throwing 
away small terms 

1 • , _ u ~  

V • . ~  V gh,,, -- n .~S.2"~b,, Vgh,,, (3.37) 

The energy estimate for (3.37) gives 

1 • , 
dx ~ V gh ~" VXg'h,n 

ft0"l ]2 ~n  ' 

~/n 1 1 Vx_, <~ C 2 f dx.~.2 (Un. Vgh, n)2. JCh.n f dx_~.2 V • �9 gh, n 

(3.38) 

Here the constant is again 

h 2 
C h ~ - -  (3.39) , " ~ n 2  

assuming g~,~ is a boundary layer function. The upper bound on the 
convective resistance follows immediately from (3.38) and (3.39) 

l fE d x ~ G ' h , , . G ' h , , , ~ c u 2  h. ,  (3.40) 
e o,l]: e~ + ~b~ ' ectn) 

Thus the effective resistivity a j  1 is bounded by 

a~-l~< lqm f d x - -  
n ~ m  J[0,112 

cef(h) cu~h <" + 

The optimal bound is achieved when 

d(h ) h,u o 
hl 

that is, 

- -  g [V• n[ 2 "b 1 [V gh,,,[ 

(3.41) 

(3.42) 

h, ~ g3/13 (3.43) 
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Consequently, 
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(7 Z 1 ~ Ce 3/13 (3.44) 

The estimate (3.18) on the asymptotic behavior of at then follows from the 
upper bound (3.31) and the lower bound (3.44). 

3.5. The Effective Diffusivity for General Cases 

For the more general case where y ~ ( -  1, oo) in (3.3), the exponent v 
in (3.4) becomes 

v =  4(y+  1) ~ (0, oo) (3.45) 

The same analysis as before gives 

h, ~ e 1/(2 + VdH) (3.46) 

with dn = 7/4, and the effective diffusivity is bounded by 

1 3 
Cle~<<.a~<<,c2 e~, for ~ - 2 + v d - - - 1 3 +  7 - e ( 0 ' ~ - t  Y 1/2) (3.47) 

As y ~ - 1 ,  all the stagnation points tend to concentrate on the same 
level ~b = 0 which is similar to the periodic cellular flow, and we have 
a ~  1/2. 

As y ~ oo, the streamlines in the neighborhood of ~, = 0 that con- 
tribute to the effective diffusivity have increasing perimeter. Since the effec- 
tive diffusivity is an increasing function of the connected cluster we expect 
the exponent 0~ in (3.47) to increase. In fact, 0~ ~ 0 as y ~ oo. This behavior 
is surprising and quite unlike the one for anisotropic open channels as in 
the cat's-eye flow (Fig. 2). The meandering isotropic streamlines have 
long but finite perimeters but there are no open channels that produce 
negative 0~. 

4. RANDOM CELLULAR FLOWS IN CHECKERBOARD 
CONFIGURATIONS 

Let us consider the stream function sin x sin y in the plane R 2. The 
separatrices, defined by sin x sin y = 0, form a square lattice of size n. We 
call the streamline structure in each cell Inn, (n + 1) n ] x  [kn, (k+ 1) n]  an 
eddy and a cell with an eddy vortical. 
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Let the eddy in each cell be suppressed, so that the velocity is zero in 
the cell, with probability 1 -  p, 0 ~< p ~< 1. If this occurs, the cell is called 
vacant. In other words, a cell is vortical with probability p and vacant with 
probability 1 -  p, independently of the state of the remaining cells. The 
resulting stream function ~O(x, y, co), where co labels the configuration of 
vacant and vortical cells, is either sin x sin y or 0, depending on whether 
(x, y) is in a vortical or a vacant cell. The infinite plane flow has effective 
diffusivity tr=(e, p) and we want to study the asymptotic behavior of 
a=(e,p) as e ~ 0  for 0 < p <  1. 

There are two types of cell connections that are essential in charac- 
terizing the behavior of a~(e, p) for small e. We call two neighboring cells 
edge-connected if they share a common side and corner-connected if they 
share a common corner point, but not a common side. In a fixed square 
of size 2n, a horizontal (vertical) crossing is a chain of connected cells which 
connects y = - n  ( X =  - n )  to y = n ( X =  n). A crossing is edge-connected if 
neighboring cells in the chain are edge-connected. A crossing is corner- 
connected if some neighboring cells in the chain are corner-connected. 
Following refs. 17 and 4, two edge-connected crossings are said to be 
disjoint if they do not overlap; two corner-connected crossings are said to 
be disjoint if they are separated by another crossing which does not overlap 
with them. In other words, two disjoint corner-connected crossings do not 
share any common side. They are, at best, corner-connected. 

We know from percolation theory that as we vary p we can distinguish 
three different regimes: 0 ~< p < 1 - Pc, 1 - Pc < P < Pc, Pc < P ~< 1, where 
Pc = 0.59... is the critical probability for site percolation in two-dimensions. 

When Pc < P ~< 1 (Fig. 7) we have the strong percolation phase in which 
vortical cells form an infinite cluster in edge-connection and vacant cells 

�9 
�9 
� 9 1 6 9 1 6 9 1 6 9 1 6 9 1 6 9  

I�9 �9 J�9 � 9 1 6 9 1 6 9  
� 9 1 6 9 1 6 9 1 6 9 1 6 9 1 6 9  

� 9 1 6 9  0 0 0 0  
� 9 1 6 9 1 6 9  � 9 1 6 9 1 6 9  

-lO -5 5 10 

Fig. 7. Strong percolation phase: p = 0.7. 
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form isolated islands. More precisely, there exists a positive number  0q(p) 
such that 

1 # ~disjoint horizontal (vertical) crossings of} 
n ~ edge connected vortical cells ~ 0 q ( p )  (4.1) 

as n ~ ~ ,  with probability one. Similarly, when 0 <~p < 1 - P c  (Fig. 8) we 
have the non-percolation phase in which edge-connected vortical cells form 
isolated islands. We have that 

1 # ~disjoint horizontal (vertical) crossings of} 
n ~ edge-connected vacant cells --+ 0c2(p) (4.2) 

as n--+ oo, with probability one, for some positive 0c2(p). Note that 
0~2(p) =~1(1  - - p ) .  

When 1 -  Pc < P < Pc (Fig. 9), we have the weak percolation (or *-per- 
colation) phase in which infinite, corner-connected clusters of vortical and 
vacant cells coexist and penetrate each other. More precisely, 

1 # {disjoint, corner-connected, horizontal (vertical) } 
n crossings of vertical cells -~ ill(P) 

(4.3) 

1 # (disjoint, corner-connected, horizontal (vertical)} 
n crossings of vacant cells ~ f l2(P)  

(4.4) 

as n--, ~ ,  with probability one, for some positive ill(P) and f l2(P) .  Note 
that fl2(P) -- ill(1 - p). 

�9 

-~o -k o ~ ~o 

Fig. 8. Non-percolation phase: p = 0.3. 
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Fig. 9. Weak percolation phase: p = 0.5. 
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Let us introduce a regularization of the flow around the corners, as in 
ref. 9. The flow is regularized so that the separatrices behave approximately 
like s ~  +ltl 1+~, where t and s are tangential and normal coordinates, 
respectively and 7 measures the degree of contact of two separatrices near 
the contact point. With this regularization, the facts from percolation 
theory given above and the variational characterization for the effective 
diffusivity developed in the previous sections, we prove the following 
theorems. 

T h e o r e m  4 . 1 .  (i) When pc < p .4< 1, 

c lx /~<a~(p)<c2x /~ ,  as e ~ 0  (4.5) 

for some constants Cl, C 2 > 0 .  

(ii) W h e n l - p c < p < p c ,  

a~(p)~ce(p)c 1/2(1+1/(1+2~')), if 7 > 0  (4.6) 

1 
~ ( p )  ~ c~(p) e log - ,  if 7 = 0 (4.7) 

where c~(p) satisfies 

0 < lim inf c,(p) <~ lim sup c,(p) < 
~ 0  e ~ O  

(4.8) 

822/88/5-6-5 
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and 

lim c,(p) = 1, for all 1 - P c  < P ,  P' < p ~  (4.9) 
,:~o c~(p') 

(iii) When 0 ~< p < 1 - p ~ ,  

e < a~(p) <~ c2e (4.10) 

Here < means ~< to leading order, as e ~ 0, for some constants c~, c2 > 0. 

Note that since the flow is isotropic, a~(p) is isotropic and thus a 
scalar. To fix ideas, we take e = ( 1, 0) and estimate a~(e, p) as e ~ 0. Before 
proving the theorem, we introduce an important result concerning the 
behavior of effective diffusivity as the probability p varies. 

Consider two step functions ~ and ~2 that are either 1 or 0 in each 
cell [hi, n(i+ 1))x [nj, n( j+ 1)) and doubly periodic with a period 2nn. 
Let ak., denote the effective diffusivities for the flows uk = ~eV• where 
~b = sin x sin y. If ~b 2 ~> ~b~, then it is easy to see that 

a~.~>aT,~ as e ~ 0  (4.11) 

In other words, given the same streamline geometry, the stronger the flow 
the larger the enhancement of the diffusivity. 

The following theorem is a probabilistic version of (4.11) which 
follows from (4.11) by adapting Kozlov's argumentJ 17) 

T h e o r e m  4.2. The effective diffusivity a~.(p) is a non-decreasing 
function of p as e ~ 0. 

Proof. Let Z(x) be the characteristic function of the cell [0, n]  x 
[0, n]. Then the stream function ~, for the random cellular flow may be 
written as 

r  y)  = ~ sin x sin y ~ k z ( x  -- k) (4.12) 
k~z72 

where {~k} k~Z2 are independent identically distributed random variables 
such that P(~k = 1 ) = p ,  P(~k = 0 ) =  1--p .  Consider a set of new i.i.d 
random variables { ~,} k ~ Z2 independent of { ~k } k ~ ~'2 such that P(~'k = 1 ) = 
1 - p ' ,  P ( ~ , = 0 ) = p ' .  Then the random variables ~k=~k~'k are inde- 
pendent and 

P((k = 1) =p(1  - p ' ) ,  P((k = 0 ) =  1 - p ( 1  - p ' )  (4.13) 
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Clearly, the flow with stream function 

~bl(x,y )= ~ s inx  s i ny (kZ(X-k )  (4.14) 
k E Z  2 

has effective diffusivity a~.(p( 1 - p')). Let ~o2(x, y) = Zk ~ ~: (~Z( x -- k) and 
q~l( x, Y ) = Z k ~ :  ( k Z ( x - k )  - We have that 

q~2(x, y) = q~(x, y) + ~ (k(1 -- ~,) Z(X -- k) (4.15) 
k e Z  2 

since ~k = ~u~], + ~k( 1 -- ~'k ) = (k + ~k( 1 -- ~,  ), and this implies q~z(x, y)/> 
~o~(x, y). By (4.11), we have that 

a~(p(1-p'))<~a~(p) for VO<~p,p'<~l (4.16) 

This completes the proof. 

4.1. Bounds for  the St rong-Perco la t ion  Phase 

By the comparison theorem of the previous section, there is an 
obvious upper bound for a(p) independent of p, which is the effective 
diffusivity for the periodic cellular flow ~, = sin x sin y calculated inref. 9. 
A p-dependent upper bound can also be obtained as follows. 

According to (4.1), there are m~o~(p)n, as n ~ ~ ,  disjoint, vertical, 
edge-connected crossings of eddies. Let the trial function f be flat between 
the crossings. Let it increase by 2nn/m across each vertical crossing. Inside 
each crossing, f is chosen to be of boundary layer type. We note that this 
trial function as constructed satisfies the flexible boundary condition 

f(n, y)--f(O, y)= n (4.17) 

but not the rigid, linear Dirichlet condition nor the mixed Dirichlet- 
Neumann condition of ref. 12 commonly used in the infinite volume limit 
for conductivity problems. 

When this trial function is inserted into (2.23) it gives no contribution 
in the flat regions between the crossings and gives an order (n/m) 2 v/ee con- 
tribution to the integral in each eddy of the crossings. The total number of 
eddies of the crossings is certainly less than p .  n 2 as n -~ oo. After summing 
over all edge-connected crossings, we have that 

at(p) < c .p  (4.18) 
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where c is the constant for the periodic cellular flow. (9) It will be seen below 
that (4.18) is a worse upper bound than c x/~, because p/o~2(p) will be 
shown to be greater than 1. 

For  the lower bound, we make use of a set of m ~ oq(p)n, as n ~ 
disjoint, horizontal, edge-connected crossings of eddies. The trial function 
g is taken to be fiat between the crossings and with a net decrease of 2nn/m 
across each horizontal crossing. Note that Vlg  = G satisfies the mean field 
condition ( G ) n  = e = (1, 0). In each cell of the crossings, g is of boundary 
layer type. As before, using this g in (2.27), we have the following 
inequality 

o r  

a ~ ( p ) <  p 1 (4.19) 
c 

2r 
~ c x/~ < a,(p) as e ~ 0 (4.20) 

P 

where c is the constant of the periodic cellular flow. 
In view of (4.18) and (4.20), we conclude that ~ ( p ) ~ < p  and we have 

that 

~2(p) c x/~ ~< a~(p) <~ c x/~ (4.21) 
P 

4.2. Bounds for the Non-Percolation Phase 

We use boxes of size n with order n disjoint, edge-connected crossings 
of vacant cells to construct trial functions for upper as well as lower 
bounds. This is the dual of the strong-percolation phase. The trial functions 
are chosen to be flat between the crossings of vacant cells and to be linear 
across each crossing with slope n/m where m is the actual number of 
disjoint crossings in the n-box and m ~ ~2(P) n, as n ~ ~ .  We note that this 
trial function satisfies the flexible boundary condition 

f(n, y)--f(O, y ) = n  (4.22) 

but not the linear Dirichlet condition nor the mixed Dirichlet-Neumann 
conditions commonly used in conductivity problems. (~2} From this we get 
the bounds 

< P ~  (4.23) ~< ~,(p) ~ ~ ( p )  e 
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The idea behind the lower bound in (4.21) for the strong percolation 
phase is to replace the flow between horizontal crossings by a vacant one. 
This corresponds to using trial flux functions that are fiat between 
crossings. The resulting flow has a smaller effective diffusivity and is of 
order x//~ in the horizontal direction, as e ~ 0, because of the presence of 
order n (as n ~ ~ )  horizontal, edge-connected crossings of vortical cells. 
To bound from above the effective diffusivity for the non-percolation 
phase, we replace the flow between vertical crossings by a vortical flow. 
This corresponds to using trial functions that are fiat between crossings. 
The resulting flow has a bigger effective diffusivity, which is still of order 
c in the horizontal direction, as e ~ 0, because of the presence of order n 
vertical, edge-connected crossings of vacant cells. 

4.3. Bounds for  the  W e a k  Percola t ion  Phase 

The following analysis is based on an important observation made by 
Berlyand and Golden in ref. 4, and on the calculations for the periodic 
corner flows in ref. 9. 

As noted before, in the intermediate weak percolation regime an 
infinite phase of vortical cells coexists with an infinite phase of vacant cells. 
The coexistence is made possible by corner connections. But not every 
corner connection is equally important. The special corner connections 
responsible for the enhancement of particle dispersion are the intersections 
of horizontal crossings of vortical cells and vertical crossings of vacant 
cells, or vice versa, which we call choke points. The collection of the vortical 
and vacant crossings associated with the set of choke points forms the 
backbone of the flow geometry. To avoid the singular nature of the corner 
flow we introduce a regularization as described in the beginning of this 
section. 

Let Vn be a maximal set of m disjoint, vacant vertical crossings with 
m of order n. On each crossing in Vn, a vacant cell connects to its 
neighboring cells either through an edge or a choke point. We enlarge each 
crossing in V, in a minimal way so that it also contains the vortical 
cells around its choke points. Because of the way disjointness of corner- 
connected crossings is defined, the enlarged crossings still do not overlap 
with each other. Now we consider the following trial function f(x) .  
Between the enlarged crossings let f (x )  be fiat, but let it increase by nn/m 
across each enlarged crossing. The increase is linear across sections of the 
crossing with edge connections, and these portions of the function are con- 
tinuously patched to the corner layer trial function near each choke point 
as done in ref. 9 for the periodic case. When this trial function is inserted 
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in (2.23) it gives no contribution in the regions between the enlarged 
crossings, it gives O((n/m)2e) on each crossing away from the choke points, 
and it gives O((n/m) 2 e 1/2~ +~/(1 +2y))) at each choke point. After summing 
over all choke points, we get a , ( p ) < c 2 ( p ) e  ~/2"+1/~x+2~)), for some 
c2(p)>0. Applying the dual variational, principle (2.27) yields a corres- 
ponding lower bound a,(p)  > ct(p) e ~/2~1 + ~/~1 +2~)), for some c~(p) > 0. This 
leads to 

a~(p) ,,~ c~(p) ~1/2(1 + 1/(1 + 2 7 ) )  ' 0 < lim inf c~(p) ~ lim sup c~(p) < oo (4.24) 
e ~ 0  e ~ 0  

if 7 > 0. When 7 = 0, we have 

1 
a ~ ( p ) ~ c , ( p ) e l o g - ,  0 < lim infer(p), lim sup c,(p) < ~ (4.25) 

8 e ~ O  e ~ 0  

The monotonicity of at(p) in p (Theorem 4.2) then implies that 

c~.(p) _ ,  

lim inf ~ ~ l, if 1 --Pc <P <P' <Pc (4.26) 

It is clear from the variational analysis that only the choke points can 
contribute to the coefficient c~(p) in (4.24) and (4.25). The contribution 
from all other structures is o(e 1/2(1 + ~/~1 + 2y))). Since the choke structure and 
associated backbone are statistically invariant under the interchange of 
vacant and vortical cells, c~.(p) must be symmetric in the limit e ~ 0 and so 

c~(p) 
lim 1 (4.27) 
~ 0  c~(1--p) 

Thus, (4.26) and (4.27) establish the result (4.9) in Theorem4.1. 
The lack of a Keller-Dykhne type interchange identity, prevents us 

from showing the existence of lim~ ~ 0 c,(p) and determining its exact value, 
as in ref. 4. 

APPENDIX A. CONVECTION ENHANCED DIFFUSION FOR 
PERIODIC CELLULAR FLOWS 

In this appendix we will show how to use the direct variational prin- 
ciples (2.23) and (2.25) to characterize the asymptotic behavior of the 
diffusion coefficient for the basic cellular flow with stream function 
~(x, y) = sin x sin y, when the diffusivity e goes to zero. This problem was 
analyzed in ref. 9 using the dual variational principles (2.23) and (2.27). 
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Fig. 10. The period cell. 

The analysis given here illustrates another way to use the variational 
principles in what is perhaps the simplest, nontrivial convection diffusion 
problem. 

The stream function O(x, y) = sin x sin y gives rise to a cellular flow 
(Fig. 10). The cell problem for the effective diffusivity is (cf. ref. 9) 

e A z  + u.  V z  + u . e = O  (A.1) 

and determines, up to a constant, a periodic function Z(x, y),  - n  <~ x <<, ~, 
- g  ~< y ~< n. The effective diffusivity is given by 

os(e) = e( (V Z + e)- (Vz + e))  (A.2) 

where ( ) is normalized integration over the period cell. When e = (1, 0) is 
a unit vector in the x direction then Z is odd in the x direction and even 
in the y direction. Problem (A.1) can then be restricted to a quarter of the 
cell, 0 ~< x ~< ~z, 0 ~ y ~< g, and if we define 

p+ = Z + x  (A.3) 

then 

e A p +  + u .  Vp + =0 (A.4) 

OP + (x, O) = op + (x ,  = o (A.5)  

p+(0, y) = 0, p+(rc, y)  =re (A.6) 
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Now we introduce a new coordinate system (x, y) ~ (r 0) from the 
rectangle 0 ~ x ~< lr, 0 ~< y ~< u to the region 4/>~ 0, - 4 ~< 0 ~< 4 so that 

V r  V0  = 0 (A.8)  

and 

IVOl = IVqd (A.9) 

on the boundary of the rectangle. The circulation or angle variable O(x, y) 
is determined by (A.8), (A.9), up to a constant. In general, it cannot be 
defined in all of the rectangle but only in a region including the boundary 
of the rectangle. We call the coordinates 

(h, 0 ) =  ( ~ ,  0)  (A.10) 

the boundary layer coordinates. In terms of the boundary layer coordinates 
the cell problem (A.4)-(A.6) becomes 

02-+  0 + 02p + Op + Op + 
(A.11) 

where J =  eyO x -  exOy = - V • 1 6 2  �9 V0 is the Jacobian of the map (x, y) 
(r 0). Because of (A.9), [Vr 2= [J[ at the boundary and hence the 
principal terms as e ~ 0 in (A.11) are 

with 

02p + Op + 
0h---y- + ~ -  = 0 (A.12) 

p+(0 ,0)=0,  

0p + 
- -  (0, 0) = 0, 
Oh 

p+(0, 0) = zc, 

@+ (0 ,0)=0,  
ah 

0 < 0 < 2  

2 < 0 < 4  

- 4 < 0 < - 2  

- 2 < 0 < 0  

(A.13) 
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From (A.7) we get that 

a'(e)~x/~e~ fo f_4 \--8-h-} dhdO (A.14) 

To make the above analysis precise we use the variational principles 
(2.23) and (2.25) as follows. 

A.1. Upper  Bound for the Ef fect ive Di f fus iv i ty  

As in (A.12)-(A.13) we will fix e = e l = ( 1 , 0  ) since the case 
e = e2 = (0, 1) is similar. Let 

~,L= { f  = f(h, 0),h>10, -4  <<. O<~ 4, f e C ~, 

f=-constforh~N, forsomeN>O} (A.15) 

and suppose that f e ~sL satisfies also the boundary conditions 

f(0, 0) =0, 0 < 0 < 2  

af  0) 0, - 2 < 0 < 0 ,  2 < 0 < 4  (A.16) = 

f(0, 0) = ~, - - 4 < 0 <  --2 

and the matching conditions on the separatrices 

dh~=O, - 2 < 0 < 0 ,  2 < 0 < 4  

~ = 0 ,  0 < 0 < 2  (A.17) 

dh ~ = 0 ,  - 4 < 0 <  - 2  

The matching conditions (A.17) are needed to ensure that the non local 
term in the functional satisfies the appropriate boundary conditions. This 
point will becomes clear in the following analysis. 
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Consider now the direct variational principle (2.23), over the cell 
domain. We may look for trial fields F that have the quarter cell symmetry 
of (A.4)-(A.6). Then the averages can be restricted to a quarter cell also, 
and i f f e  o~L then F = Vf is an admissible trial field. We calculate Vfand 
F~ V f f o r f ~ L  and e small. We have that 

Then 

~b~ Of. ,~ Of ~y Of Of (A.18) 

~(F. F~ , .~ f 0 f44 ~ IV~][ 2--~-~/] dhdO 

1 
~v/ee-~ fo f 4  \OhJ dhdO (A.19) 

since IVq;t2~ IJI near q;=0. 
Similarly, let ( I / e ) F ~  V f =  Vf' for some periodic f ' ,  then f '  is the 

solution to the singular Poisson problem 

Af' = u. Vf (A.20) 

and 

1 
- ( r ~  Vf. F V  Vf)  = e (Vf ' .  Vf ' )  (A.21) 

As far as the energy integral e ( V f ' - V f ' )  is concerned, to leading order, it 
is sufficient to solve f '  from the dominant terms in equation (A.20) after 
the boundary layer rescaling 

02 f '  ~J0-~ f IV~I 2 (A.22) 

which becomes 

02 
f '  ~-~-~ f (A.23) Oh z off 

since [V~/[ 2= J on the separatrices. Equation (A.23) is an ordinary differen- 
tial equation in h and can be solved by direct integration. The matching 
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conditions (A. 17) guarantee that the solution f '  ~ ~BL of (A.23) satisfies the 
boundary conditions 

f ' ( 0 , 0 ) = 0 ,  0 < 0 < 2 ,  - 4 < 0 <  - 2  

af' 
o--h- (0, O) = O, - 2 < 0 < 0 ,  2 < 0 < 4  

(A.24) 

From (A.20) we see that 

oo 4 h 0 f  t 2 

--4 \ ' ~  J dh dO (A.25) 

Since f ~ ~-BL is identically zero for h large the h integrals are well defined. 
Using (A.19) and (A.25) in the variational principle (2.23) we have 

1 
a~(e) ~ ~(Vf. Vf) + -  ( r ~  vf. r ~ v f )  

and hence 

l im 1 ~ iiz~ 4 ~ (~j,r 2 (fh~jr ,)2) ~1o ~ae(e)<~ f-4(\OhJ + ~,:,-ff~dh dhdO (A.26) 

Since the left hand side does not depend on f we also have 

1 
lim ~ a~(e) ~< inf 
,g.~ O ~/~. f c.~'SL 

(A.16), (A. 17) 

1 4 O f  , 2 
(A.27) 

A.2. Lower Bound for the Effective Diffusivity 

Contrary to what we did in ref. 9, where we used the dual variational 
principle (2.27) to obtain the lower bound, here we get it from the direct 
maximum principle (2.25). The direct maximum principle is derived from 
the direct min-max principle (2.20) by elimination of the infimum. We 
have 
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~(e) = 
V x F ' = 0  
<F'> =0 

sup {e<F.F)  - 2 <  ~ F .  F'> - e < F '  .F ' )}  

= sup 
V x F ' = 0  
(F'> =0 

(A.28) 

{ 2< ~F'> . e + e  le l2-  e<F' �9 F'> --1 <rV'F'. F~eF'> } 

(A.29) 

with V . F + V ~ F '  =0, < F > = e  (A.30) 

Unlike the minimum principle, the maximum principle (A.29) is indefi- 
nite, and is therefore useful only when the nonlocal term 1 /e (F~F ' .  F ~ F ' >  
can be asymptotically evaluated in the limit e ~ 0, as in the case of periodic 
flows. However, for random flows, for which the boundary layer coordinates 
may not exit, it remains a technical difficulty. Instead of (A.29), we will 
actually use (A.28) because it preserves the symmetry between F and F'. 

We consider the boundary layer trial function f ' ~  ~BL such that the 
boundary conditions (A.24) and the following matching conditions are 
satisfied 

f :  dh ~f' -~-= 0, - 2 < 0 < 0 ,  

f :  dh 0 < 0 < 2  

f :  dh f h O0 - 4 < 0 < - 2  

2 < 0 < 4  

(A.31) 

As in the analysis for the upper bound, we have that F ~ Vf where f ~ ~-8/. 
and satisfies the boundary conditions (A.16) due to (A.31). We have 

02 frO ah 2 f ~  f '  (A.32) 

and 

< F . F )  ~x/~  ~ 4 dhdO (A.33) 

( F t ' F " ) " ~ / t ~  ~-2 fo f-4kN/] dhdO (A.34) 

( e F . V ' )  ~x/~ ~-5 h-~-~-h~-~-~ andO (A.35) 
4 
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With (A.33)-(A.35), (A.28) becomes 

1 f : f 4  
�9 dh dO lim infaAe) ~< x/~ sup 

e ~ O f '  ~'~BL ~ 4 

(A.24), (A.31) 

r(oS~ 2 (Of oS' oSOS'~_I/oS'~21 (A.36) 
x~.t~) -2h ~O0 OOOhJ \Oh/ J 

A.3. Equali ty of Upper and Lower Bounds 

We now show that the upper bound (A.27) is equal to the the lower 
bound (A.36) and that they coincide with the constant in (A.14), obtained 
by solving (A.12)-(A.13). This will prove 

Theorem A.1. The limit 

lim 1 1 f ; f 4  (Op+'/2 
~o ~ ( e )  = ~  4 \ -~-/  dh dO (A.37) 

exists and equals the right side. 

Proof. We begin with (A.12) and write it in divergence form 

where 

0. (11 +_h) 0p -+ =0  (A.38) 

. = ( ~  h ,A40  

Both p+ and p -  are to satisfy the boundary conditions (A.13). We define 

c , ( e ) = l _ ~ f ;  f4 (Op+~2 
- - 4  ~,--~'-J dh dO (A.41) 

We proceed now to symmetrize this problem. Let 

p++p- p+--p 
, p' - (A.42) P 2 2 
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Then p and p' satisfy 

O2p . Op' 02p ' Op 
0h2 + ~ - =  0, Oh 2 + ~-~ = 0 (A.43) 

in terms of which c*(e) admits a min-max variational formulation 

oo 4 f lop\2 fOp,\2"l 
c * ( e ) = ~  fo f-4aha~ +t~-h-) ; (A.44) 

1 f~o f~ Q-h I, -h~(Op'~ {Op'~ (A.45) 
=z ---~ 4 dhdO 11 ) \OpJ 'kOp)  

l oe 4 f f0p'\ 2 (OpOp' OpOpt~_r 
=zr~fo f_adhdOl\gJ -2hkohO0 OOOhJ \Oh/J (A.46) 

= ,at say ' U ;  4 
f e "~BL f '  e ~BL - ~  4 

(A.47) 

(A.16), (A.17) (A.24), (A.31) 

~(oS~_2h(OSoS' oSoS'~ (oS'~ 
x { t Oh ) g oo oo oh ) - \-~s ) j 

By eliminating the supremum and infimum, we 
principle and maximum principle respectively 

c*(e) = 

c*(e)= 

obtain the minimum 

)2 t inf 1 f ;  f4 ~(Of'12 f ~h Of dh ' dhdO 

(A.16), (AA7) 

1U 4 
dhd0 sup ~5 -4 

f '  E J'BL 
(A.24), (h.31) 

• f  2 

\OhO0 0 0 0 h i  \ ~ / J  

0 2 a 
wi th  ~ f +  f'=0 

(A.48) 

(A.49) 

(h.5o) 

This shows the desired equality. 
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